Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tong-Tao Xu,^a* Xing-You Xu,^a Da-Qi Wang,^b Jian Gao^c and Lu-De Lu^d

^aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, ^bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, ^cDepartment of Chemical Engineering, Lianyungang Technical College, Lianyungang 222006, People's Republic of China, and ^dMaterials Chemistry Laboratory, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China

Correspondence e-mail: xutongtao_1968@163.com

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.015 Å Disorder in solvent or counterion R factor = 0.064 wR factor = 0.131 Data-to-parameter ratio = 11.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved The asymmetric unit of the title complex, $[Ni(C_{11}H_{29}N_5)]$ - $(ClO_4)_2$, consists of an $[Ni(C_{11}H_{29}N_5)]^{2+}$ cation and two uncoordinated perchlorate anions. The Ni^{II} atom is five-coordinated in a slightly distorted square-pyramidal geometry, with four of the N atoms forming the basal plane and the fifth N atom in the apical position. The complex shows a three-dimensional network structure assembled by intermolecular hydrogen bonds.

Comment

Research on organic polyamines is currently of great interest because of their potential applications as useful organic ligands, in which the amine N atoms have strong coordination ability to transition metal ions (Xu *et al.*, 1997). N,N,N',N'-Tetrakis(3-aminopropyl)ethylenediamines have been extensively studied (Mikuriya *et al.*, 1985; Micheloni *et al.*, 1986), but few new unsymmetric organic polyamine N,N,N'-tris(3aminopropyl)ethylenediamines and their complexes have been reported. Here we report the synthesis and crystal structure of a new pentamine nickel(II) complex, (I). The asymmetric unit of the Ni^{II} complex consists of an [N,N,N'tris(3-aminopropyl)ethylenediamine- κ^5N]nickel cation and two uncoordinated perchlorate anions.

From Fig. 1, it can be seen that the Ni^{II} atom is fivecoordinated by five N atoms in a slightly distorted squarepyramidal geometry. The value of the τ parameter (0.05) is close to the ideal value for a square-pyramidal coordination polyhedron (Addison *et al.*, 1984). Four N atoms (N1, N2, N3 and N4) form the basal plane, with atom N5 in the apical position. The Ni atom is displaced by 0.281 (4) Å from the basal plane.

The packing diagram (Fig. 2) shows that there is extensive hydrogen bonding in the crystal structure. The five N atoms of the pentadentate ligand form intermolecular hydrogen bonds with seven O atoms of the perchlorate anions. The perchlorate O atoms are disordered. Each perchlorate anion acts as an Received 13 April 2006 Accepted 24 June 2006

The asymmetric unit of the title complex, showing 30% probability displacement ellipsoids. For each anion, both disorder components are shown

acceptor of hydrogen bonds from the amine groups of an adjacent complex cation. These intermolecular interactions form a three-dimensional network and stabilize the crystal structure.

Experimental

To a stirred solution of Ni(ClO₄)₂·6H₂O (0.5 mmol) in methanol (15 ml) was added dropwise a solution of N,N,N'-tris(3-aminopropyl)ethylenediamine (0.5 mmol) in methanol (10 ml) at room temperature. After stirring for 1 h at 320 K, the complex precipitated and was filtered off, washed with methanol and dried in vacuo. Bluepurple single crystals, in about 46% yield, suitable for X-ray structure determination were obtained by slow evaporation of the resulting filtrates for about 20 d at ambient temperature. Analysis, found: C 27.08, H 5.89, N 14.29%; calculated for C₁₁H₂₉Cl₂N₅NiO₈: C 27.01, H 5.93, N 14.31%.

Crystal data

[Ni(C ₁₁ H ₂₉ N ₅)](ClO ₄) ₂
$M_r = 489.00$
Monoclinic, $P2_1/n$
a = 9.454 (4) Å
b = 14.589 (7) Å
c = 14.477 (7) Å
$\beta = 90.285 \ (8)^{\circ}$
$V = 1996.6 (16) \text{ \AA}^3$

Data collection

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.131$ S = 1.003526 reflections 309 parameters

Z = 4 $D_x = 1.627 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\mu = 1.29 \text{ mm}^-$ T = 298 (2) K Block, blue-purple $0.42\,\times\,0.30\,\times\,0.19$ mm

10278 measured reflections 3526 independent reflections 1216 reflections with $I > \sigma(I)$ $R_{\rm int} = 0.120$ $\theta_{\rm max} = 25.0^{\circ}$

H-atom parameters constrained $w = 1/[\sigma^2(F_{\rm o}{}^2) + (0.0268P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

Figure 2

The crystal packing of the title complex, showing the three-dimensional network structure. Dashed lines indicate hydrogen bonds.

Table 1

Selected geometric parameters (Å, °).

Ni1-N5	2.015 (6)	Ni1-N2	2.058 (6)
Ni1-N4	2.026 (6)	Ni1-N3	2.084 (7)
Ni1-N1	2.049 (6)		
N5-Ni1-N4	99.5 (3)	N1-Ni1-N2	91.0 (3)
N5-Ni1-N1	97.8 (3)	N5-Ni1-N3	96.3 (3)
N4-Ni1-N1	90.3 (3)	N4-Ni1-N3	90.7 (3)
N5-Ni1-N2	97.7 (3)	N1-Ni1-N3	165.5 (3)
N4-Ni1-N2	162.4 (3)	N2-Ni1-N3	83.8 (3)

Table 2			
Hydrogen-bond	geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1A···O4	0.90	2.52	3.119 (9)	125
$N1 - H1B \cdots O5'$	0.90	2.22	2.95 (2)	138
$N1 - H1B \cdots O7$	0.90	2.29	3.150 (13)	160
$N2 - H2 \cdot \cdot \cdot O3'$	0.91	2.34	3.24 (2)	166
$N2 - H2 \cdot \cdot \cdot O4$	0.91	2.51	3.161 (10)	129
$N2-H2 \cdot \cdot \cdot Cl1$	0.91	2.95	3.801 (8)	157
$N4-H4A\cdots O3'^{i}$	0.90	2.32	3.140 (17)	151
$N4-H4A\cdotsO1^{i}$	0.90	2.47	3.29 (3)	153
$N4-H4B\cdots O7^{ii}$	0.90	2.43	3.235 (13)	149
$N4-H4B\cdots O6'^{ii}$	0.90	2.64	3.42 (3)	145
$N4-H4B\cdots O5$	0.90	2.66	3.107 (12)	112
$N5-H5A\cdots O1'^{iii}$	0.90	2.31	3.14 (2)	153
$N5-H5A\cdots O3^{iii}$	0.90	2.54	3.33 (3)	147
$N5-H5B\cdots O8'$	0.90	2.23	2.95 (2)	136
$N5-H5B\cdots O5'$	0.90	2.45	3.30 (3)	158
$N5 - H5B \cdots O8$	0.90	2.47	3.328 (14)	160
$N5-H5B\cdots Cl2$	0.90	2.94	3.794 (7)	159
Symmetry codes: $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$	(i) $x + \frac{1}{2}, -$	$y + \frac{1}{2}, z + \frac{1}{2};$	(ii) $-x + 1, -y,$	-z + 1; (iii)

Methylene H atoms were placed in calculated positions with C-H = 0.97 Å and torsion angles were refined to fit the electron density, $U_{iso}(H) = 1.2U_{eq}(C)$. Amido H atoms were placed geometrically with N-H = 0.90and 0.91 Å, and refined in riding mode with $U_{iso}(H) =$ $1.2U_{eq}(N).$

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Key Laboratory of Marine Biotechnology of Jiangsu Province.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.

- Micheloni, M., Paoletti, P., Bianchi, A. & Garciaespana, E. (1986). Inorg. Chim. Acta, 117, 165–168.
- Mikuriya, M., Hamada, K., Kida, S. & Murase, I. (1985). Bull. Chem. Soc. Jpn, 58, 1839–1840.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Xu, X.-Y., Cheng, J.-L., Luo, Q.-H., Shen, M.-C., Huang, X.-Y. & Wu, Q.-J. (1997). Polyhedron, 16, 223–227.